Hierarchical quadrature for multidimensional singular integrals - Part II

نویسنده

  • Peter Meszmer
چکیده

In a previous part I, we introduced a method for the evaluation of singular integrals arising in the discretization of integral equations based on the repeated subdivision of domains. The integrals defined on these subdomains are classified such that a class of integrals can be expressed as a sum of regular integrals and representatives of other classes. A system of equations describes the relations between the classes. Furthermore the approximate value of the singular integrals only depends on the accuracy of the calculation of regular integrals. Part I left a gap on certain parameter configurations on which the mentioned system of equations is irregular. This paper shall close this gap. To this end, we introduce an alternative splitting strategy based on a modified Hadamard partie finie integral. AMS Subject Classifications: 65D32, 42B20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical quadrature for multidimensional singular integrals

We introduce a method for the evaluation of singular integrals arising in the discretisation of integral equations. The method is based on the idea of repeated subdivision of domains. The integrals defined on these subdomains are classified. Each class can be expressed as a sum of regular integrals and representatives of other classes. A system of equations describes the relations between the c...

متن کامل

Composite quadrature formulae for the approximation of wavelet coefficients of piecewise smooth and singular functions

The computation of wavelet coefficients of a function typically requires the computation of a large number of integrals. These integrals represent the inner product of that function with a wavelet function on different scales, or with the corresponding scaling function on a fine scale. We develop quadrature rules for those integrals that converge fast for piecewise smooth and singular functions...

متن کامل

Gauss-chebyshev Quadrature Formulae for Strongly Singular Integrals

This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...

متن کامل

Evaluation of Singular Integrals by Hyperbolic Tangent Based Transformations

We employ a hyperbolic tangent function to construct nonlinear transformations which are useful in numerical evaluation of weakly singular integrals and Cauchy principal value integrals. Results of numerical implementation based on the standard Gauss quadrature rule show that the present transformations are available for the singular integrals and, in some cases, give much better approximations...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014